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C
ost-efficient management of the heat
generated in integrated circuits is one
of the grand challenges of contempo-

rary electronics.1 A solution to this problem is
further perplexed by the high density of
dissipated power. Thus development of new
resilient heat conducting materials is increas-
ingly important. High strength, flexibility, and
intrinsic thermal conductivity of carbon nano-
tubes (NTs) make materials on their basis
attractive for thermal management applica-
tions.2 However, apart from the high intrinsic
conductivity, an efficient coupling of NT ma-
terials to heater and cooler reservoir, that is, a
high contact, or Kapitza, conductance is also
required.
Recently, thermal transport through indi-

vidual NTs3�10 and NT arrays11�17 was
shown to be dominated by a high thermal
resistance at the interface. The reported
values for the interface thermal conductivity
vary significantly from sample to sample.
Particularly, for an interface betweenmetal-
lic single-wall carbon nanotubes (SWNT)
and quartz, these values are in the range
from 0.007 to 0.17 W m�1 K�1, spanning
more than 1 order of magnitude.5�7 Thus,
further studies of the mechanisms respon-
sible for the thermal interface coupling
should be indispensable for understanding
both the origin of these variations and ways
to enhance the Kapitza conductivity.
One of the mechanisms, providing a sub-

stantial contribution to the interface ther-
mal conductivity, is direct phonon heat trans-
port. Such a transport between NTs and
various substrates/media was studied in refs
18�24. However, the earlier works often ne-
glected the role or underestimated the im-
portance of the electromagnetic radiation.
Here it will be shown to contribute signifi-
cantly to the heat transfer across the interface.
It was first predicted by Polder and Van
Hove25 that the heat transport across the
vacuumgapbetween twomacroscopicbodies
dramatically increases when the gap width

becomes smaller than the thermal radiation
wavelength because of increasing contribu-
tion of the nonpropagating evanescent
modes. Since then, the importance of the
near-field electromagnetic mode tunneling
across the vacuum gap for the thermal cou-
pling has been both studied theoretically26�31

and demonstrated experimentally32�34 for a
number of different systems, including the
SiO2�graphene interface.30

In this article, we focus on the near-field
radiative heat transfer between a vertical
forest of metallic SWNTs and a polar (SiO2)
substrate. Not only can such a system be
achieved experimentally and applied for ther-
mal solutions, but it also demonstrates an
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ABSTRACT

High thermal conductivity of carbon nanotubes (NTs) is attractive for the heat removal

applications. However, the problem of efficient thermal coupling to the heater/cooler still

needs to be resolved. We study near-field electromagnetic tunneling as a mechanism of heat

transfer across the interface. We report interface thermal (Kapitza) conductance between a

low-density vertical metallic single-wall NT forest and a quartz substrate on the order of 50

MW/Km2 and explain it by strong electromagnetic interaction and near-field entanglement

between the surface phonon�polaritons in the polar dielectric and the NT plasmons. We

predict that the thickness of the NT film can be tweaked to the resonance wavelength of these

entangled modes for performance optimization of nanocarbon thermal interconnects.
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interesting fundamental physics effect, such as polar-
iton localization and near-field plasmon�polariton
entanglement (to be discussed below). Using the
formalism of the fluctuation electrodynamics,35 we
predict the high magnitude of the near-field Kapitza
conductance. By analyzing spectral function of Kapitza
conductance, we will identify the origin of such a high
interface thermal coupling, which is the strong elec-
tromagnetic interaction between surface phonon�
polaritons in the polar dielectric (substrate) and
plasmons in the SWNT. We will present dependence
of the Kapitza conductance on the vacuum gap, which
shows a power law with two characteristic length
scales. All of these data will be explained in terms of
the (quantum) electrodynamic coupling of the surface
modes. Since the properties of those modes can be
controlled experimentally, we make the predictions
on the optimization of performance of the SWNT forest
thermal interconnects.

RESULTS AND DISCUSSION

The Model. Two main conditions for the near-field
heat exchange becoming a dominating thermal con-
ductance mechanism are (i) (relatively) small interface
gap, on the order of several nanometers, as we show
next, and (ii) resonance coupling of the electromag-
netic modes of two surfaces. For the polar substrate,
such modes are the surface phonon�polaritons,36 and
for the SWNT forest, these could be either one-electron
excitations or the collective modes, plasmons. The
former will be studied elsewhere, and the latter,
plasmons, known to have a large oscillator strength,
are the subject of our current study. As we justify
below, the efficiency of plasmon�polariton coupling
is so high for the SWNT forest directly applied to the
quartz surface that even a moderate forest density
allows one to achieve a good heat exchange rate. Thus,
in what follows, we assume the forest to be sufficiently
rarefied, so that the mutual electromagnetic inter-
action between SWNTs can be neglected. This can be
achieved for average distance between the SWNTs
exceeding a few tens of nanometers,37 that is, for the
forest density N smaller than 1016 m�2.

We also assume, for the sake of clarity, that the
vertical forest solely consists of identical metallic
SWNTs of length L, placed at a distance d above
semi-infinite polar dielectric substrate (Figure 1 inset)
with the known dielectric function εsub(ω), absorbing
and isotropic homogeneous. One can show that the
variation of the near-field Kapitza conductance be-
tween the forest and the substrate upon changing
the SWNT radius is negligible (see Supporting Informa-
tion). We discuss the role of nonmetallic NTs and the
length dependence later. The SWNTs in the forest are
assumed to be “free standing”, that is, in vacuum (air).
Heat leak from SWNTs in the air can be neglected as
compared to heat transport along SWNTs because of the

small value of thermal Kapitza conductance at the
SWNT�air interface (103�105Wm�2 K�1).38,39 Therefore,
we assume that local thermal equilibrium at a given
temperature is set within each SWNT.

Within an approximation of noncoupled plasmons
and following the fluctuation electrodynamics formal-
ism established by Rytov,35 the radiative heat flux be-
tween the SWNT forest and the dielectric substrate at a
given frequency,ω, that is the heat spectral density can
be written as (see Methods section for details)

q·(ω) ¼ Nω3Reσzz(ω) Imεsub(ω)
2π2c4

(Θ(ω, Tsub) �Θ(ω, Tnt))

�
Z
Snt

dRnt

Z
Vsub

dRsub ∑
R¼ x, y, z

jGRz(Rsub,Rnt,ω)j2

(1)

whereΘ(ω,T) = pω/(exp(pω/kBT)� 1) is the blackbody
thermal function, σzz(ω) is the axial linear surface
conductivity of a metallic SWNT, kB is the Boltzmann
constant, c is the speed of light in the vacuum, andRsub,
Rnt are the radius vectors of the points in the substrate
volume Vsub and on the SWNT surface Snt, respectively.
Here we assume that both the substrate and SWNTs in
the forest are in their local thermodynamic equilibrium
at temperatures Tsub and Tnt, respectively. In order to
calculate the electric Green dyadic of GRz(Rsub,Rnt,ω) of
an individual metallic SWNT placed above the sub-
strate, we apply the numerical approach developed in
our previous works40�42 (see Methods section for
details).

Simulation Results. We restrict our consideration to
the low-frequency range, well below frequencies of the

Figure 1. (a) Spectral Kapitza conductance, g(ω), between
quartz substrate and vertical forest of (15,0) SWNTs, at N =
1016 m�2, d = 3.4 Å, Tsub = 300 K, as a function of the SWNT
length, L, and the frequency. Blue lines follow the analytic
dispersion for plasmons: kpl = πs/L. (b) Cross section of g(ω)
at L = 500 nm (red line), and dielectric contrast for the
quartz�air interface (green line) as a function of frequency.
(Inset) Schematic geometry of the thermal interface.
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interband electron transitions in metallic SWNTs, as it
provides the main contribution to the heat flux (see
Figure 1). The conductivity of the metallic SWNT in this
range is of Drude type43,44

σzz(ω) ¼ i
2vFe2

π2Rp(ωþ i=τ)
(2)

where vF≈ 8� 107 cm s�1 is the Fermi velocity in SWNT
or graphene, e is the electron charge, p is the reduced
Planck constant, R is the SWNT radius, and τ∼ 100 fs is
the relaxation time. The quartz dielectric function is
parametrized as in refs 45 and 46. The spectrum of the
imaginary part of the dielectric contrast at the
quartz�air interface, Im(εsub(ω) � 1)/(εsub(ω) þ 1), is
presented as a green line in Figure 1b. It contains six
resonance lines47 which are the surface phonon�
polaritons (SPP), defined by the condition

Reεsub(ωSPP) ¼ �1 (3)

The spectral Kapitza conductance, g(ω) =
limTsubfTnt

_q(ω)/(Tsub �Tnt), of the forest of identical me-
tallic (15,0) SWNTs with the forest density N = 1016 m�2,
placedat theminimum(vanderWaals) distanced=3.4Å
above the quartz substrate surface at the temperature
Tsub = 300 K, is plotted in Figure 1a. Two families of
pronounced resonances can be found on the density
plot. The frequencies of the bright vertical resonances
do not depend on the SWNT length and coincide with
the resonances of the dielectric contrast (green line in
Figure 1b). Thus the origin of these resonances is the
polaritons in quartz. The frequencies of the resonances
of the second family (faded orange curves in Figure 1a)
decrease with the SWNT length according to the simple
power law which is understood as the space-quantiza-
tion of the plasmons in a SWNT of a finite length:48,49

ωpl � kpl � πs

L
(4)

such approximately linear dispersion of the plasmons
was numerically obtained in ref 43, where s is an integer
(quantum) number. We found this analytic dispersion
relation (blue lines in Figure 1a) to be in very good
agreement with the maxima corresponding to plasmon
resonances in g(ω). Such plasmon resonances also reveal
themselves in the spectra of thermal radiation from
metallic SWNTs.40

The spectral Kapitza conductance, g(ω), is peaked at
the frequencies of the polariton resonances in quartz and
decreases fast at higher frequencies: for example, at pω =
60 meV (at the second polariton resonance frequency),
g(ω) is more than 8 orders of magnitude higher than at
pω = 300 meV. This is due to the spectral density of the
electromagnetic modes, proportional to the imaginary
partof thedielectric contrast, decreasesas1/ω3, and,most
importantly, the equilibrium thermal function Θ(ω,T)
decreases exponentially with ω. When the polariton
energy exceeds the thermal energy kBT ≈ 26 meV, the

spectral contribution to the total heat flux becomes
negligible (at room temperature).

The spectral Kapitza conductance, g(ω), is almost
independent of the SWNTs length L and decreases
monotonously with the separation distance, d, and so
does the total Kapitza conductance G =

R
0
¥g(ω)dω

(Figure 2). It falls rapidly with increasing gap width, in
particular, the Kapitza conductance across the 10 nm
gap is more than 30 times smaller than across the 1 nm
gap. However, we emphasize that the phonon heat
conductance will be zero at the gap exceeding the
amplitude of the thermal motion of individual atoms
(bond length), which is about several angstroms, so the
near-field Kapitza conductance wins over all other
“contact”mechanisms if the substrate surface is rough.
Furthermore, for the gap narrower than 1 nm, the
Kapitza conductance decreases as 1/d2, while the
decrease rate is slowing down for larger distance. It
should be noted that a similar gap width dependence
(with different characteristic distances and decay rates)
of the thermal near-field Kapitza conductance was de-
monstrated for sphere�plate32 and plate�plate34,50,51

geometries. This behavior reflects the spatial structure of
the electrical near-field in the gap between the plane
substrate and SWNT.

Data Analysis and Interpretation. Although the physical
picture of the near-field heat flux supported by two
types of surface polariton modes (of the SWNT and of
the quartz) is consistent with our data, careful exam-
ination of the spectral function g(ω) reveals additional
peaks, not present in the dielectric contrast of quartz
and different from the plasmon family (compare red
and green curves in the vicinity of the surface phonon
resonances in Figure 1b, at frequencies 60, 144, and
148 meV). One can clearly resolve doublet resonance
lines in the Kapitza conductance spectrum, with the
lower termof thedoublet layingbelow thequartz surface
phonon�polariton. In order to study this doublet split-
ting in more detail, we present magnified maps of the
spectral Kapitza conductance in Figure 3 for different gap
width d. The frequency region in Figure 3 (40 meV e

pω e 160 meV) covers all six polaritons of quartz.
The maximum of g(ω,k) reveals the dispersion of all

electromagnetic modes of the system, as a function of

Figure 2. Total Kapitza conductance, G, as a function of the
gap width d at Tsub = 300 K, N = 1016 m�2, for L = 50, 500 nm
forest thickness (top red and lower green curves).
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SPP frequency and momentum or plasmon frequency
and (quantized) momentum, which is proportional to
the reciprocal SWNT length: kpl � L�1, according to
eq 4. Anticrossing of the plasmon and phonon�
polariton modes is clearly seen in Figure 3. Thus, in
the narrow region;at the interception of the horizon-
tal lines of the SPP modes (without dispersion) and
the (linear dispersion) lines of the plasmons;where
ωSPP = ωpl, these two modes should be entangled. In
addition to the entangled modes, one can resolve a
nondispersion (SPP-like) mode which does not couple
to the plasmon, as schematically shown in the right
panel of Figure 3. Physics of the doublet is understood
by comparing different panels of Figure 3.We note that
the splitting (coupling) of the polariton resonances
decreases with the gap width, and for 10 nm gap, the
splitting can hardly be seen at all. At the same time, the
noncoupled resonance is preserved at the same fre-
quency in all panels. We conclude that the latter peak is
due to the bare SPP modes of the quartz substrate,
while the former mode is a localized polariton. Despite
the fact that the SWNT cross section is much smaller
than the wavelength of the phonon�polaritons, the
polarization interaction between the plasmon and SPP
modes can lead to the localization of the polaritons in
the closest proximity of the SWNT, where the strength
of the interaction is largest. Localized (bound) polar-
itons should have the energy below the nonlocalized
(continuum) SPPmodes, consistent with the numerical
data.

Thermal Efficiency and Performance Optimization. Nowwe
have identified all of the spectral features of g(ω,k) and
are able to analyze performance of the SWNT thermal
interconnects as a function of the sample thickness
and density. In order to compare the interconnect with
the current thermal management technologies, we
estimate the heat generation density of a modern

electronics chip at the level of 1 MWm�2. For a typical
temperature drop of 100 K between the hot and cold
sides of the film, one needs G ∼ 10�2 MW K�1 m�2,
which is exceeded bymore than 3 orders ofmagnitude
by the predicted near-field efficiency of the SWNT
forest with the moderate density N = 1016 m�2, which
post factum justifies viability of our model assumption
of a noninteracting low-density NT array. We note that

Figure 3. Spectral Kapitza conductance as a function of the inverse SWNT length, 1/L (quantized plasmon momentum), and
the frequency for different gapwidths d, as indicated in the legend, at Tsub = 300 K,N = 1016m�2. Schematic representation of
the polariton line splitting is presented in the rightmost panel.

Figure 4. (a) Kapitza conductance,G, as a function of SWNTs
length L for two different gap widths, d, between the forest
of (15,0) SWNTs and the quartz substrate. Dashed lines
denote the Kapitza conductance g(ω1:ω2) =

R
ω1

ω2g(ω)dω in
the frequency range from ω1 to ω2. (b) Normalized con-
ductance g(55:75) as a function of d and L. The normal-
ization function gm(d) is defined as a maximum value of
g(55:75) for a given d. (c) Blue and red lines are the solutions
of eq 4 for surface plasmons in the SWNT and eq 3 for
polaritons in quartz, correspondingly.
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the semiconducting NT at zero doping level does not
support low-frequency plasmons and, thus, will be
inactive/inefficient in the heat transport in our model
(see Supporting Information). However, in reality, all
SWNTs have unintentional hole doping, thus in the
SWNT forest, most of the NT channels will be active.

The thickness dependence of the Kapitza conduc-
tance is nonmonotonous (Figure 4), which further
allows material optimization. Three broad maxima
(major peaks superimposed by a number of smaller
peaks) can be seen in Figure 4a in the Kapitza con-
ductance of the forest as a function of the film thick-
ness between 50 and 500 nm. We note that the top
curves are shown for d = 0.34 nm and demonstrate
much larger broadening as well as the peak shift to the
smaller L as compared to d = 10 nm (bottom curves).
Solid and dashed curves show the total Kapitza con-
ductance and the partial Kapitza conductance.52

Figure 4a shows that the partial conductance (the
integral in the narrow vicinity of the strongest SPP
peak, 55 meV e pω e 75 meV, shaded in panel c)
constitutes most of the total Kapitza conductance. This
partial Kapitza conductance consists of only one peak
(single coupled polariton mode) and allows a simple
interpretation.

Panel b shows corresponding partial conductance
g(55:75) as a function of both the film thickness and the
gap width. The forest thickness, Lmax, corresponding to
the conductance maximum, is close to the value at
interception of the first three plasmon resonances with
second polariton in quartz (Figure 4c). It should be
mentioned that eq 4, strictly speaking, defines the
plasmon resonances for the SWNT in vacuum. Interac-
tion between the plasmons in the SWNT and the
polaritons in the substrate leads to the red shift of
the plasmon resonances as well as to their broadening.
This red shift reveals itself as “bending” of the curve of
Lmax(d) in panels a and b at small d.

It is instructive to derive the Kapitza conductance
between an individual SWNT in the forest and the
substrate per unit of the SWNT�interface contact area:
gnt = G/NπR2. Taking into account that Kapitza con-
ductance G across the 5 nm gap between the forest
of metallic (15,0) SWNTs of length L = 500 nm, at

N = 1016 m�2, is equal to 0.38 MW K�1 m�2 and taking
R = 0.59 nm, we obtain a typical value gnt = 3.4 �
107 W K�1 m�2, which is in a good agreement with the
experimental value presented in ref 5.

Finally, we compare phonon heat transport across
the interface with the plasmon mechanism. The
phonon�phonon contribution to the thermal Kapitza
conductance gnt across the 2.2 Å gap between a
short (3.69 nm in length) armchair (10,10) SWNT and
a SiO2 substrate was estimated in ref 23 to be 5.8 �
107 W m�2 K�1. We calculated the plasmon contribu-
tion across the 3.4 Å gap between a short (50 nm in
length) zigzag (15,0) metallic SWNT53 and SiO2 sub-
strate to be 570 � 107 W m�2 K�1. This contribution
gradually decreases as the gap width increases to
100 Å to the value 1.4 � 107 W m�2 K�1. However, at
this gap, the phonon mechanism would give zero
value for Kapitza conductance. Thus we conclude that
the plasmon thermal coupling mechanism clearly
dominates the phonon mechanism in this geometry.

CONCLUSIONS

Concluding, in this work, using the methods of the
fluctuation electrodynamics, we numerically calcu-
lated the near-field component of the heat transfer
between the polar substrate and the NT thermal inter-
connect. For the vertical SWNT forest of a low density,
we demonstrate theoretically that the electromag-
netic near-field contribution to the interfacial Kapitza
conductance is on the order of 50 MW K�1 m�2,
comparable or larger than the classical phonon con-
tribution. Moreover, in contrast to phonon contribu-
tion, we proposed a “noncontact” heat conduction
mechanism, decaying as 1/dR with the vacuum gap
between the edge of the SWNT forest at the substrate
surface, where R∼ 1.5�2. The spectral analysis of the
Kapitza conductance revealed the existence of en-
tangled surface phonon�plasmon�polariton modes
that are responsible for the strong near-field coupling
across the vacuum gap. We predict that the perfor-
mance optimization is possible for the interconnects,
by tweaking the thickness of the SWNT film to the
resonance with the wavelength of the entangled
polariton modes.

METHODS
The heat flux between a rarefied vertical forest of plasmonically

uncoupled metallic SWNTs and dielectric substrate is given by

_Q � N(Psub f nt � Pnt f sub) (5)

where the first term

Psub f nt ¼
Z
Snt

dRntÆjin, sub(Rnt , t) 3 E
sub(Rnt , t)æ (6)

is the electromagnetic power transferred from the (hot) substrate
to each of individual SWNTs, jin,sub is the electric current density

induced on the SWNT surface, Snt, by the electric field Esub of the
fluctuating currents in the substrate, jsub, and the angular brackets
denote statistical ensemble average. The second term gives the
electromagnetic power transferred back from the SWNT to the
substrate:

Pnt f sub ¼
Z
Vsub

dRsubÆjin, nt(Rsub, t) 3 E
nt(Rsub, t)æ (7)

We expand fluctuating electromagnetic fields and induced
electric currents into Fourier integrals f(r,t) =

R
�¥
¥ dωf(r,ω) and

make use of the constitutive equations for both surfaces:
jin,A (r,ω) =σA (ω) 3 E

A (r,ω), whereA = subor nt. The conductivity
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tensor is σRβ
nt (ω) = δRzδβzσzz(ω) for the SWNT, σRβ

sub(ω) =
(εsub(ω) � 1)δRβω/4iπ for the substrate. Though electromagnetic
response of the SWNT is anisotropic, one can neglect all compo-
nents of the SWNT conductivity tensor but the axial one, σzz(ω),
thus emphasizing the quasi one-dimensional response of the
SWNT.
Then the heat flux can be written as _Q =

R
0
¥dω _q(ω), where

:
q(ω) ¼ 2NReσzz (ω)

Z
Snt

dRntfEsubz (Rnt ,ω)E
sub�
z (Rnt ,ω)g

� NωImεsub(ω)
2π

Z
Vsub

dRS ∑
R¼ x, y, z

fEntR (RS ,ω)Ent�R (RS ,ω)g (8)

is the heat spectral density. Here the cross-spectral
density {ER(r,ω)Eβ

* (r,ω)} is defined as27 ÆER(r,ω)Eβ*(r,ω0)æ =
δ(ω �ω0){ER(r,ω)Eβ

* (r,ω)}.
The Fourier components of the fluctuating fields in the

system are given by54,55

EA (r,ω) ¼ (iω=c2)
Z

dRAG (r,RA ,ω) 3 j
A (RA,ω) (9)

where G is the Green dyadic of the metallic SWNT placed
above the dielectric substrate, and the integral is taken over
the region containing fluctuating current sources, that is, the
SWNT surface Snt or the substrate volume Vsub. According to the
fluctuation�dissipation theorem,27,28,35 in the linear response
regime,56 the cross-spectral densities of these currents are
defined as

fjAR (RA ,ω)j�β
A (R0

A ,ω)g ¼ (1=π)Θ(ω, TA )ReσA
Rβ(ω)δ(RA � R0

A )

(10)

where the blackbody thermal function isΘ(ω,T) = pω/(exp(pω/
kBT) � 1), kB is the Boltzmann constant, and R,β = x,y,z. Here-
inafter, we assume that both the substrate and the SWNT are in
the local thermodynamic equilibrium at the temperatures Tsub
and Tnt, respectively. Substituting these expressions into eq 8,
we obtain the following expression for the spectral heat flux:

:
q(ω) ¼ Nω3Reσzz (ω)Imεsub(ω)

2π2c4
(Θ(ω, Tsub) �Θ(ω, Tnt))

�
Z
Snt

dRnt

Z
Vsub

dRsub ∑
R¼ x, y, z

jGRz (Rsub ,Rnt ,ω)j2 (11)

The electric Green dyadic, G (r,r0 ,ω), for an individual
SWNT placed above the dielectric substrate is defined as

[(rr � I ) 3 (rr � I ) � k2(r)I ] 3G (r, r0 ,ω) ¼ 4πIδ(r � r0) (12)

where

k(r) ¼ (ω=c)
ffiffiffiffiffiffiffiffi
εsub

p
, z < 0

(ω=c), z > 0

�
(13)

is the wavenumber, I is the unit dyadic, δ(r� r0) is the Dirac delta
function. The Green dyadic G must also satisfy boundary condi-
tions imposed on the SWNT surface (see eqs 7 and 8 in ref 42).
Using vector Green theorem, we reduce eq 12 to the Hallen
integral equation for the Green dyadic, which is numerically
solved then (see refs 40�42 and Supporting Information for
details).
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